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Motivations

• Maintaining a balance between electricity supply and demand is important for grid stability

• Providing accurate forecasts for short-term electricity load is therefore crucial for all participants in the energy
market

• The availability of new geolocalized and individual electricity consumption data can be exploited to further
minimize forecasting error

• Generalized Additive Models are used in practice as they are both performant and explainable

Context



Graph Neural Networks (1/3)

 



Graph Neural Networks (2/3)

 

Graph Convolutional Networks (GCNs) – [Kipf T.N., Welling M. (2016)]

• GCNs learn representations by aggregating local information through convolutions

𝑾(ℓ): learned weight matrix
𝒃 : learned bias vector
𝒩𝑖: neighborhood of node 𝑣𝑖

𝜎: activation function (ReLU)



Graph Neural Networks (3/3)

 

SAmple & AGgregatE (SAGE) – [Hamilton W.L. (2018)]

• SAGE extends GCNs

• New aggregation rule

• SAGE learns aggregation functions

Image taken from OhMyGraphs: GraphSAGE 
and Inductive Representation Learning



Inferring Graphs from Data (1/2)

 

Geographical Data

• Similarity matrix of the geographical positions

• Physical obstacles (sea, mountains, etc.) are not considered



Inferring Graphs from Data (2/2)

 

Electricity & Weather Data

• Project first the signal in d-dimension into a 1-dimensional space !

• Distance based: Dynamic Time Warping (DTW), distance between splines

• Optimization based: GL3SR



Synthetic Datasets

• Generate temperatures and rescale them

• Train load splines on observed temperatures

• Evaluate the trained splines with the generated temperatures

• Two covariance matrices were tested: correlation on the space graph and identity

Datasets (1/2)



Datasets (2/2)
Real dataset

• 12 administrative regions of France are considered

• 32 weather stations (appearing as black dots)

• Half-hourly data, train = 2014-2018, test = 2019



Explainability (1/2)

GNNExplainer [Ying R., et al. (2019)]

• Pinpoint a compact subgraph that enhances a GNN’s prediction certainty

• GNNs can highlight links between nodes and therefore important subgraphs can be extracted:



Explainability (2/2)

Accumulated Local Effects

• Impact of temperature on load for each region

• Air conditioning and heating effects represented, but discrepancy at extreme temperatures 



Results (1/2)

 



Results (2/2)

 



Conclusion

 

➢ Expert aggregation takes advantage of all the qualities of the different models

➢ GNN models bring diversity when there is an underlying graph structure in the data

➢ Focusing on explainability helps to improve models and build new graphs

Perspectives

• Apply models with attention mechanisms to the problem of load forecasting

• Make models by period of the year (summer/winter)

• Compare the results of several explainers for greater reliability

• Add temporal modules to the models
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Appendix (1/4)

Generalized Additive Models
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Aggregation of Experts

• Exponentially Weighted Average (EWA)

• Polynomial weighted averages with multiple learning rates (ML-Poly)
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Parametrization
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Parametrization
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