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Context

Motivations

* Maintaining a balance between electricity supply and demand is important for grid stability

* Providing accurate forecasts for short-term electricity load is therefore crucial for all participants in the energy
market

* The availability of new geolocalized and individual electricity consumption data can be exploited to further
minimize forecasting error

» Generalized Additive Models are used in practice as they are both performant and explainable



Graph Neural Networks (1/3)
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Message passing layer

Fig. 1: Example of a message passing layer in a GNN. V,,, E,, and U,, respectively refer to node,
edge, and global level at stage n. ¢ are update functions and p are propagation functions.
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Graph Neural Networks (2/3)

Graph Convolutional Networks (GCNs) — [Kipf T.N., Welling M. (2016)]
h((}) = Xi,

W®: learned weight matrix
1 ‘ b:| d bi t
h(_erl) — _W(f)h(_ )+b - learned bias vector
’ Z J N;: neighborhood of node v;

JEN; €ij o .
o: activation function (RelLU)

where c;; = /|Ni[\/INj].

* GCNs learn representations by aggregating local information through convolutions
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Graph Neural Networks (3/3)

SAmple & AGgregatE (SAGE) — [Hamilton W.L. (2018)]
* SAGE extends GCNs

* New aggregation rule

D = o (WO 1 {7 (Wt 1), v, 0]

* SAGE learns aggregation functions
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Inferring Graphs from Data (1/2)

Geographical Data ~ dist (4, ) dist (i, j)?

T . : - — 1 —— =
* Similarity matrix of the geographical positions Wy=(Wii<ij<i2 = CXp{ o2 } if CXD{ o2 } =

. . . 0 otherwise.
* Physical obstacles (sea, mountains, etc.) are not considered
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Fig. 3: Graph corresponding to W 71 with o = 478.3.



Inferring Graphs from Data (2/2)

Electricity & Weather Data

Project first the signal in d-dimension into a 1-dimensional space !

Distance based: Dynamic Time Warping (DTW), distance between splines

Optimization based: GL3SR
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Datasets (1/2)

Synthetic Datasets

Generate temperatures and rescale them

TE(t) = at + bj(coswit + coswat) b = (b)i1<j<12 ~ N(f2, C)

Train load splines on observed temperatures

f;; - arg min (fj(T,;Jbb) — L?bs)z Wlth .fj‘ - SI:)E’]J](.‘:i‘j.'_{]j ey qu-li?)

s

Evaluate the trained splines with the generated temperatures
LE°™(t) = f;(TE™)(t) +€;(t) where € = (gj)1<j<12 ~ N(0, %)

Two covariance matrices were tested: correlation on the space graph and identity
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(a) Temperature generated in Auvergne-
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(b) Load generated with a cubic spline ba-
sis of rank 10 in Auvergne-Rhéne-Alpes.



Datasets (2/2)

Real dataset

* 12 administrative regions of France are considered

* 32 weather stations (appearing as black dots)
* Half-hourly data, train = 2014-2018, test = 2019

Hauts—-de-France

lle-8e~-France

: Table 1: Features in the dataset.
Bourgogne-Franche-Comté | Variable | Definition
Date Date
Region Region
Load Electricity consumption (in MW)
Nebulosity Cloud cover
Wind Wind
Temperature Temperature (in °C)
2 TempMin, TempMax | Minimal and maximal values of Temp for the day
TempSmoothHigh /Low Exponentially smc_'othed temperatures
Instant N Instant in the. day
Posan Position of the day in the year
DayType Categorical variable indicating the type of the day
Weekend Categorical variable for the weekend
Summer, Christmas | Categorical variable for summer and Christmas
Holiday_zone Categorical variable for the other holidays




Explainability (1/2)

GNNExplainer [Ying R., et al. (2019)]
* Pinpoint a compact subgraph that enhances a GNN’s prediction certainty

* GNNs can highlight links between nodes and therefore important subgraphs can be extracted:
maxg, MI(Y¢,Gs) = H(Yg)~ H(Yg | G =Gs, X = Xs)

Explanation Graph for June 1st 2019, Explanation Graph for June 1st 2019,

Edge Weight
Edge Weight

(a) Synthetic dataset (X = p(W,)). (b) Real dataset.

Fig. 10: Explanation graphs in June 2019 obtained from the space matrix.

Edge Weight



Explainability (2/2)

Accumulated Local Effects
* Impact of temperature on load for each region

* Air conditioning and heating effects represented, but discrepancy at extreme temperatures

Spline and Predicted Effects
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Fig. 11: Spline (dashed line) and predicted (scatter plot) effects. The distribution of the generated
temperatures is represented in gray.



Results (1/2)

Table 5: Numerical performance in MAPE (%) and RMSE (MW) at national level on the test set.

Real Dataset Synthetic Dataset (X = p(W)) | Synthetic Dataset (X = TI)
MAPE (%) RMSE (MW)| MAPE (%) RMSE (MW) |MAPE (%) RMSE (MW)

Model




Results (2/2)

—gcn_id w—gCcn_Sp = gcn_di — OCN_Ol gcn_dt sage_id = sage_sp sage_di = sage_gI —— Sage_dt = gam
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Fig. 6: Weights associated with the experts on the synthetic datasets. ¥ = p(W) (left), ¥ =TI
(right). GAM is the main expert, followed by mutliple SAGE-gl3sr and SAGE-dtw.



Conclusion

» Expert aggregation takes advantage of all the qualities of the different models
» GNN models bring diversity when there is an underlying graph structure in the data

» Focusing on explainability helps to improve models and build new graphs

Perspectives
* Apply models with attention mechanisms to the problem of load forecasting
* Make models by period of the year (summer/winter)
* Compare the results of several explainers for greater reliability
* Add temporal modules to the models
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Appendix (1/4)

Generalized Additive Models

yr = Bo+ Zf L fi(ze ) e where £ is the intercept, and (&) is an i.i.d. random noise.

filz) = E BB k(x) with coefficient (3 f where m; is the chosen spline basis dimension
k: 1 b-Spline Basis Functions
0.6+
Electricity load in 2019 0.4
o
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(a) Load prediction for 2019 using GAM. (b) A GAM model and its spline basis.
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Aggregation of Experts

Exponentially Weighted Average (EWA)

-1
e_n Zf;:l E-‘? (mk,s)

S e (i)

=1

o~

Pkt =

Polynomial weighted averages with multiple learning rates (ML-Poly)

> setn >0

> set initial weights to pj; = 1/N

> initialize y; = ZN:l pj1fia

J
> fort=2,..., T

» for each expert j, pick the learning rates:

M1 =1/ (1+ 3 (s, ys) — I(fis,¥5)))

_ R:(8;)"
» update the weights: pj: = 1j.¢ 1%

» then aggregation: y; = Ejv_l Pt
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Parametrization

Table 3: Hyperparameters of the GNN models for the synthetic dataset (X = p(W)).

Model | Graph structurc‘batch_s ize ‘ n_layers |hidden_cha.nnels\n_epochs | # parameters

Training time

GCN Identity 512 3 50 127 2701 ~ 390s
GCN Space 1024 3 64 158 4353 ~ 480s
GCN | DistSplines 1024 3 64 168 4353 ~ 510s
GCN GL3SR 1024 3 64 147 4353 ~ 450s
GCN DTW 1024 3 64 146 4353 ~ 450s
SAGE Identity 512 4 50 9 10351 ~ 50s
SAGE Space 512 4 50 12 10351 ~ 60s
SAGE| DistSplines 512 4 50 11 10351 ~ 50s
SAGE GL3SR 256 3 50 3 5301 ~ 10s
SAGE DTW 512 4 50 12 10351 ~ 50s

Table 4: Hyperparameters of the GNN models for the synthetic dataset (X = I).

M()dcl|Graph stru(:turc‘batch_size‘n_layers|hidden_channels\n_epochs|# pammutors‘Training time

GCN Identity 512 3 50 127 2701 ~ 390s
GCN Space 1024 3 64 158 4353 ~ 480s
GCN DistSplines 1024 3 64 168 4353 ~ 510s
GCN GL3SR 1024 3 64 147 4353 ~ 4505
GCN DTW 1024 3 64 146 4353 ~ 450s
SAGE Identity 512 4 50 9 10351 ~ 50s
SAGE Space 1024 3 64 21 8577 ~ 60s
SAGE| DistSplines 1024 3 50 6 5301 ~ 155
SAGE GL3SR 1024 4 50 10 10351 ~ 40s
SAGE DTW 512 4 50 13 10351 ~ 50s
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Parametrization
Error variation by model on the test set
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